LinkedList源码阅读

在日常的开发中,我们使用的比较多的可能是ArrayList,前面我们也进行了ArrayList源码阅读。ArrayList不能维护元素插入的顺序,当我们需要保持元素的插入顺序时,就需要使用LinkedList了。今天我们就来简单分析一下LinkedList的源码实现。

本文基于JDK1.8

内部数据结构

Java中的LinkedList类实现了List接口和Deque接口,是一种链表类型的数据结构,支持高效的插入和删除操作,同时也实现了Deque接口,使得LinkedList类也具有队列的特性。LinkedList类的底层实现的数据结构是一个双端的链表。

LinkedList类中有一个内部私有类Node,这个类就代表双端链表的节点Node。这个类有三个属性,分别是前驱节点,本节点的值,后继结点。
源码中的实现是这样的:

1
2
3
4
5
6
7
8
9
10
11
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;

Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}

注意这个节点的初始化方法,给定三个参数,分别前驱节点,本节点的值,后继结点。这个方法将在LinkedList的实现中多次调用。

下图是LinkedList内部结构的可视化,能够帮我们更好的理解LinkedList内部的结构
image

双端链表由node组成,每个节点有两个reference指向前驱节点和后继结点,第一个节点的前驱节点为null,最后一个节点的后继节点为null。

LinkedList类有很多方法供我们调用。我们不会一一介绍,本文会详细介绍其中几个最核心最基本的方法,LinkedList的创建添加和删除基本都和这几个操作有关。

linkFirst() method

这个方法是插入第一个节点

1
2
3
4
5
6
7
8
9
10
11
12
13
14
/**
* Links e as first element.
*/
private void linkFirst(E e) {
final Node<E> f = first;
final Node<E> newNode = new Node<>(null, e, f);
first = newNode;
if (f == null)
last = newNode;
else
f.prev = newNode;
size++;
modCount++;
}

我们发现出现了两个变量,first和last这两个变量是LinkedList的成员变量,分别指向头结点和尾节点。他们是如下定义的:

1
2
3
4
5
6
/**
* Pointer to first node.
* Invariant: (first == null && last == null) ||
* (first.prev == null && first.item != null)
*/
transient Node<E> first;

1
2
3
4
5
6
/**
* Pointer to last node.
* Invariant: (first == null && last == null) ||
* (last.next == null && last.item != null)
*/
transient Node<E> last;

我们可以看到注释中的内容。first和last需要维持一个不变量,也就是first和last始终都要维持两种状态:

  • 如果双端链表为空的时候,两个都必须为null
  • 如果链表不为空,那么first的前驱节点一定是null,first的item一定不为null,同理,last的后继节点一定是null,last的item一定不为null。

知道了first和last之后,我们就可以开始分析linkFirst的代码了。

linkFirst的作用就是在first节点的前面插入一个节点,插入完之后,还要更新first节点为新插入的节点,并且同时维持last节点的不变量。

我们开始分析代码,首先用f来临时保存未插入前的first节点,然后调用的node的构造函数新建一个值为e的新节点,这个节点插入之后将作为first节点,所以新节点的前驱节点为null,值为e,后继节点是f,也就是未插入前的first节点。

然后就是维持不变量,首先第一种情况,如果f==null,那就说明插入之前,链表是空的,那么新插入的节点不仅是first节点还是last节点,所以我们要更新last节点的状态,也就是last现在要指向新插入的newNode。

如果f!=null那么就说明last节点不变,但是要更新f的前驱节点为newNode,维持first节点的不变量。

最后size加一就完成了操作。

linkLast() method

分析了linkFirst方法,对于 linkLast()的代码就很容易理解了,只不过是变成了插入到last节点的后面。我们直接看代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
/**
* Links e as last element.
*/
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}

到这里我们发现有这个两个方法,我们已经可以实现一个简单队列的插入操作,上面两个方法就可以理解为插入队头元素和队尾元素,这也说明了LinkedList是实现了Deque接口的。

从源码中也可以看出,addfirst和addLast这两个方法内部就是直接调用了linkFirst和LinkLast

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/**
* Inserts the specified element at the beginning of this list.
*
* @param e the element to add
*/
public void addFirst(E e) {
linkFirst(e);
}

/**
* Appends the specified element to the end of this list.
*
* <p>This method is equivalent to {@link #add}.
*
* @param e the element to add
*/
public void addLast(E e) {
linkLast(e);
}

linkBefore(E e, Node succ)

下面我们看一个linkBefore方法,从名字可以看出这个方法是在给定的节点前插入一个节点,可以说是linkFirst和linkLast方法的通用版。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/**
* Inserts element e before non-null Node succ.
*/
void linkBefore(E e, Node<E> succ) {
// assert succ != null;
final Node<E> pred = succ.prev;
final Node<E> newNode = new Node<>(pred, e, succ);
succ.prev = newNode;
if (pred == null)
first = newNode;
else
pred.next = newNode;
size++;
modCount++;
}

我们可以看到代码的实现原理基本和前面的两个方法一致,这里是假设插入的这个节点的位置是非空的。

add(int index, E element)

下面我们看add方法,这个方法就是最常用的,在指定下标插入一个节点。我们先来看下源码的实现,很简单

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/**
* Inserts the specified element at the specified position in this list.
* Shifts the element currently at that position (if any) and any
* subsequent elements to the right (adds one to their indices).
*
* @param index index at which the specified element is to be inserted
* @param element element to be inserted
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public void add(int index, E element) {
checkPositionIndex(index);

if (index == size)
linkLast(element);
else
linkBefore(element, node(index));
}

首先判断给定的index是不是合法的,然后如果index==size,就说明要插入成为最后一个节点,直接调用linklast方法,否则就调用linkBefore方法,我们知道linkBefore需要给定两个参数,一个插入节点的值,一个指定的node,所以我们又调用了Node(index)去找到index的那个node。

我们看一下Node node(int index)方法,这个方法就是找到给定index的node并返回,类似于数组的随机读取,但由于这里是链表,所以要进行查找

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/**
* Returns the (non-null) Node at the specified element index.
*/
Node<E> node(int index) {
// assert isElementIndex(index);

if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}

我们看到node的实现并不是像我们想象的那样直接就线性从头查找,而是折半查找,有一个小优化,先判断index在前半段还是后半段,如果在前半段就从头开始找,如果在后半段就从后开始找,这样最坏情况也只要找一半就可以了。

转自 Java源码剖析之LinkedList